Moment equations for the mixed formulation of the Hodge Laplacian with stochastic loading term
نویسندگان
چکیده
We study the mixed formulation of the stochastic Hodge–Laplace problem defined on an n-dimensional domain D (n 1), with random forcing term. In particular, we focus on the magnetostatic problem and on the Darcy problem in the three-dimensional case. We derive and analyse the moment equations, that is, the deterministic equations solved by the mth moment (m 1) of the unique stochastic solution of the stochastic problem. We find stable tensor product finite element discretizations, both full and sparse, and provide optimal order-of-convergence estimates. In particular, we prove the inf–sup condition for sparse tensor product finite element spaces.
منابع مشابه
Moment equations for the mixed formulation of the Hodge Laplacian with stochastic data
We study the mixed formulation of the stochastic Hodge-Laplace problem defined on a n-dimensional domain D (n ≥ 1), with random forcing term. In particular, we focus on the magnetostatic problem and on the Darcy problem in the three dimensional case. We derive and analyze the moment equations, that is the deterministic equations solved by the m-th moment (m ≥ 1) of the unique stochastic solutio...
متن کاملStochastic Short-Term Hydro-Thermal Scheduling Based on Mixed Integer Programming with Volatile Wind Power Generation
This study addresses a stochastic structure for generation companies (GenCoʼs) that participate in hydro-thermal self-scheduling with a wind power plant on short-term scheduling for simultaneous reserve energy and energy market. In stochastic scheduling of HTSS with a wind power plant, in addition to various types of uncertainties such as energy price, spinning /non-spinning reserve prices, unc...
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کاملTriple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian
In this paper, we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian dynamic equation on time scales. We prove the existence at least three positive solutions of the boundary value problem by using the Avery and Peterson fixed point theorem. The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly. Our results ...
متن کاملA Posteriori Error Estimates for Finite Element Exterior Calculus: The de Rham Complex
Finite element exterior calculus (FEEC) has been developed over the past decade as a framework for constructing and analyzing stable and accurate numerical methods for partial differential equations by employing differential complexes. The recent work of Arnold, Falk, and Winther includes a well-developed theory of finite element methods for Hodge–Laplace problems, including a priori error esti...
متن کامل